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Guaranteed interval analysis localization for mobile robots

Rémy Guyonneau∗, Sébastien Lagrange, Laurent Hardouin and Philippe Lucidarme

Laboratoire d’Ingénierie des Systèmes Automatisés (LISA), Université d’Angers, 62 avenue Notre Dame du Lac, Angers, France

(Received 26 April 2013; revised 28 November 2013 and 29 January 2014; accepted 6 February 2014)

This paper presents a set membership method (named Interval Analysis Localization (IAL)) to deal with the global
localization problem of mobile robots. By using a LIDAR (LIght Detection And Ranging) range sensor, the odometry
and a discrete map of an indoor environment, a robot has to determine its pose (position and orientation) in the map
without any knowledge of its initial pose. In a bounded error context, the IAL algorithm searches a set of boxes (interval
vector), with a cardinality as small as possible that includes the robot’s pose. The localization process is based on
constraint propagation and interval analysis tools, such as bisection and relaxed intersection. The proposed method is
validated using real data recorded during the CAROTTE challenge, organized by the French ANR (National Research
Agency) and the French DGA (General Delegation of Armament). IAL is then compared with the well-known Monte
Carlo Localization showing weaknesses and strengths of both algorithms. As it is shown in this paper with the IAL
algorithm, interval analysis can be an efficient tool to solve the global localization problem.

Keywords: interval analysis; bounded errors; global localization; mobile robots; kidnapping

1. Introduction

Robot localization is one of the most important issue of
mobile robotics [1,2]: a robot has to know its location to be
able to perform navigation tasks. The localization problem
can be divided into two categories: the pose tracking and the
global localization. In the pose tracking problem, a robot has
to find its new pose using the knowledge of its initial pose.
Usually, this is done in real time while the robot is exploring
its environment. In the global localization problem, a robot
has to find its pose without the knowledge of its initial pose.

Most of the proposed solutions to localize a robot are
based on probabilistic estimation techniques (see [3,4]). The
Kalman Filter [5,6] and its improvements [7] are used for the
pose tracking problem [8] and more precisely for the SLAM
problem (see [9,10]). Particle filters [11] with, for example,
the Monte Carlo algorithm [12] and its spin-off [13,14] are
used to deal with the global localization problem.

In this paper, a set membership approach, named Interval
Analysis Localization (IAL) algorithm, will be considered
for the global localization problem and compared to a Monte
Carlo Localization (MCL) algorithm. Set membership lo-
calization algorithms already exist. Using a Set Inversion
Via Interval Analysis (SIVIA) approach [15] and an en-
vironment vectorization [16], for example, or combining
stochastic and set membership tools.[17]

The presented approach has several advantages over the
existing set-membership localization methods.

∗Corresponding author. Email: remy.guyonneau@univ-angers.fr

First, IAL algorithm considers a binary grid map, ob-
tained, for example, by classical SLAM techniques, and
do not need environment vectorization, unlike [16]. All
the maps presented in Section 4 have been entirely pro-
vided by actual robots: they are sets of points and did not
have any human operator modification (as it can be done
in [15] to notify seamarks). It can be noticed that, even if
we chosen probabilistic SLAM techniques to provide the
maps, it exists set-membership SLAM.[18] By using a grid
map, the algorithm computation is independent over the
number of obstacles of the environment, which is not the
case for vectorized environments. Furthermore, it can be
noticed that no landmarks are considered as this paper does
not associate occupancy grid maps to landmark maps. Such
differentiation can be found in [19–21].

The presented method is a full deterministic and repeat-
able set membership method that does not consider any
stochastic tool, unlike [17]. Thus, the results of the local-
ization process are obtained in a guaranteed way, accord-
ing to a fixed number of outliers (measurements that are
not consistent with the problem). This guarantee (that the
robot’s pose is contained in the algorithm results) is obtained
by considering a bounded error context and using interval
analysis.

Then, the proposed method can be implemented fully
on-board, as it is presented in Section 4.3, and do not need
any distant server to process the localization. Finally, this
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2 R. Guyonneau et al.

Figure 1. Robot used during the CAROTTE challenge.

method can deal with the kidnapping problem, i.e. detect a
kidnapping situation and then process a global localization.

The proposed algorithm combined two interval tools:
contraction and bisection. First, the localization problem
is seen as a Constraint Satisfaction Problem (CSP). Using
contractors, the set of feasible poses is reduced (contracted).
Then, when the CSP failed to contract the domains, a bi-
section is performed. Thus, it is possible to improve the
precision of the CSP results.

The paper is organized as follows. First, the considered
global localization problem is presented in Section 2. The
IAL algorithm is detailed in Section 3 and experimental re-
sults are presented in Section 4. Finally, Section 5 compares
the IAL and the MCL algorithms and Section 6 concludes
this paper.

2. The global localization problem

This section presents the considered localization problem.

2.1. The robot

A mobile wheeled robot (depicted in Figure 1) with a range
sensor is considered. This system is characterized by the
following discrete time dynamic equations:

q(k + 1) = f (q(k), u(k)), (1)

y(k) = gε(q(k)). (2)

The robot’s pose q(k) = (x1(k), x2(k), θ(k)) is defined
by its location x(k) = (x1(k), x2(k)) and its orientation

Figure 2. Sensor measurements y(k) = (y1(k), . . . , yn(k)). The
maximal range of the sensor is denoted ymax .

θ(k) in the environment, denoted ε, at discrete time k. The
environment ε ∈ R

2 is a two-dimensional domain where
the robot moves. The function f characterizes the robot’s
dynamic and the vector u(k) corresponds to the control
vector at time k.

Here is the dynamic function we have considered for our
experimentations:⎛

⎝ x1(k + 1)

x2(k + 1)

θ(k + 1)

⎞
⎠ =

⎛
⎝ x1(k)

x2(k)

θ(k)

⎞
⎠ +

⎛
⎝ sin(θ(k))�x,k

cos(θ(k))�x,k

�θ,k

⎞
⎠ ,

(3)
with �x,k the translation done by the robot between the time
k and k+1, and �θ,k the rotation done by the robot between
the time k and k + 1. Those two values are estimated by the
odometry’s sensors.

The vector y(k) = (y1(k), . . . , yn(k)) is the vector of
measurements. The function gε() is not known, as it strongly
depends on the environment, which is not known perfectly
but approximated by a grid map (Section 2.2). However, it
can be noticed that y(k) depends on the robot pose q(k) and
the environment ε. In fact, a measurement yi corresponds
to the distance into the direction γi between the robot and
the first obstacle in ε (Figure 2).

2.2. The environment
The environment ε where the robot is moving is approx-
imated by an occupancy grid map.[4] Figure 3 depicts an
example of indoor environment. The grid map, named G,
is composed of n × m cells (i, j) and at each cell (i, j) is
associated gi, j ∈ {0, 1}:
gi, j

=
{

0 if the cell corresponds to an obstacle-free subspace of ε,

1 else.
(4)

G is a discrete version of ε. Figure 4 represents an example
of occupancy grid map with 35 × 38 cells.
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Advanced Robotics 3

Figure 3. The environment of the CAROTTE challenge.

Figure 4. Example of occupancy grid map. White cells represent
free spaces.

2.3. The objective

The objective of the global localization problem is to find
q(k), the pose of the robot at discrete time k, without any
information about the initial pose q(0). This is done by using
the sensor data y(0), . . . , y(k), the control data u(0), . . . ,

u(k − 1) (estimated by the odometry), and the grid map G.

3. Interval analysis localization, a deterministic
approach

The proposed method uses interval analysis and CSPtools to
solve the global localization problem. This section
presents basics of those tools and then presents the IAL
algorithm.

3.1. Interval analysis introduction

An interval vector,[22] or a box [q] is defined as a
closed subset of R

n :[q] = ([x1], [x2], · · · ) = ([x1, x1],
[x2, x2], · · · ).

The size of a box is defined as

si ze([q]) = (x1 − x1) × (x2 − x2) × · · · ,

For instance si ze([2, 5], [1, 8], [0, 5]) = 105.
It can be noticed that any arithmetic operators such as

+,−,×,÷ and functions such as exp, sin, sqr, sqrt, . . .
can be easily extended to intervals,[23].

A CSP is defined by three sets. A set of variables V , a set
of domains D for those variables and a set of constraints C
connecting the variables together.

Example of CSP:⎧⎨
⎩

V = {x1, x2, x3}
D = {x1 ∈ [7,+∞], x2 ∈ [−∞, 2], x3 ∈ [−∞, 9]}

C = {x1 = x2 + x3}

⎫⎬
⎭ .

(5)

Solving a CSP consists into reducing the domains by
removing the values that are not consistent with the con-
straints. It can be efficiently solved by considering interval
arithmetic.[24] For the previous example:

x1 = x2 + x3 ⇒ x1 ∈ [x1] ∩ ([−∞, 2] + [−∞, 9])
⇒ x1 ∈ [7,+∞] ∩ [−∞, 11] = [7, 11]

x2 = x1 − x3 ⇒ x2 ∈ [x2] ∩ ([7, 11] − [−∞, 9])
⇒ x2 ∈ [−∞, 2] ∩ [−2,+∞] = [−2, 2]

x3 = x1 − x2 ⇒ x3 ∈ [x3] ∩ ([7, 11] − [−2, 2])
⇒ x3 ∈ [−∞, 9] ∩ [5, 13] = [5, 9]

The solutions of that CSPare the following contracted do-
mains [x1]∗ = [7, 11], [x2]∗ = [−2, 2] and
[x3]∗ = [5, 9].

Later the localization problem will be expressed as a CSP.

3.2. The IAL algorithm

A bounded error context is considered for the global local-
ization problem presented in Section 2. In other words, it
is assumed that all the measurements have a bounded error.
For instance, the lidar sensor URG-30LX has a ±5cm mea-
surement accuracy1.[25] Thus a guaranteed interval [yi (k)]
can be associated to each measurement yi (k), according to
the sensor accuracy. For example, by considering a guar-
anteed maximal range error εy it is possible to compute an
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4 R. Guyonneau et al.

Figure 5. wi , the coordinates of the obstacle detected by yi in the
map’s frame.

(a) (b)

(c)

Figure 6. Example of contraction. In (a), there is a grid map
G (each black cell value is 1). The box [wi ] (light grey) is a
guaranteed evaluation of the measurement wi according to [q]
(dark grey) and [yi ]. By using the constraint a measurement has
to intersect an obstacle in the map the domain [wi ] is contracted
(b) and then by another constraint (the distance between the robot
and the detected obstacle is yi ∈ [yi ]) it is possible to contract the
domain [q] (c).

interval [yi (k)] = [yi (k)− εy, yi (k)+ εy] that contains the
distance between the robot and the detected obstacle, in a
guaranteed way. It can be noticed that all the measurements
that are not consistent with this bounded error context are
considered as outliers. The same idea applies to the odom-
etry sensors.

In this context, the IAL algorithm is able to find a list
Lk = {[q(k)]}, with [q(k)] = ([x1(k)], [x2(k)], [θ(k)]),
that includes the robot pose q(k), q(k) ∈ Lk . As it is
assumed that no information is available about the initial

pose q(0), the initial list L0 is initialized with a box [q(0)]
that contains all the possible poses for the robot: all the en-
vironment for the position and all the possible orientations.

The IAL algorithm (Algorithm 1) input Lk−1 is a set of
boxes that contains the estimations of the previous pose of
the robot. This set may contain only one box. This algorithm
has three important steps.

Algorithm 1: Interval Analysis Localization
Data: Lk−1, [y(k)], [u(k − 1)]

1 Lk = ∅;
2 while Lk−1 �= ∅ do
3 [q(k − 1)] = Lk−1.pop_back();
4 update [q(k − 1)] to [q(k)] according to [u(k − 1)];
5 contract [q(k)] by using [y(k)] and G;
6 if si ze([q(k)]) > ξ then
7 bisect [q(k)] into [q1(k)] and [q2(k)];
8 Lk .push_back([q1(k)]);
9 Lk .push_back([q2(k)]);

10 else
11 if [q(k)] �= ∅ then
12 Lk .push_back([q(k)]);

Result: Lk .

First, line 4, the prediction step. The pose at time k is
evaluated from the pose at time k − 1 by using equation
(1). The computation [q(k)] = f ([q(k − 1)], [u(k − 1)]) is
done using interval arithmetic.

Then, line 5 corresponds to the contraction step. The
measurements y(k) and an approximation (g

G
) of the ob-

servation function gε are used to contract the boxes (pose
estimations): the idea is to evaluate {q(k)|gε (q(k)) = y(k)}.

As ε is approximated by G, IAL algorithm searches
{[q(k)]|g

G
([q(k)]) = [y(k)]}. This problem is seen as a CSP

with the variables q(k), y(k), the domains [q(k)], [y(k)] and
constraints built with the measurements y(k) and the map
G. To be compared with the map, the measurements [yi ] are
converted to obstacle coordinates [wi ] = ([wi1 ], [wi2 ]) in
G’s frame, according to [q(k)] and γi , as depicted in Figure
5. An example of contraction using one measurement is
presented in Figure 6. Note that

[wi ] =
([wi1][wi2]

)
=

([yi ] sin([θ(k)] + [γ i]) + [x1(k)]
[yi ] cos([θ(k)] + [γ i]) + [x2(k)]

)
,

(6)
with [q(k)] = ([x1(k)], [x2(k)], [θ(k)]) the current evalua-
tion of the robot’s pose.

Finally, the last step of the IAL is the bisection line 7. If
a contracted box [q(k)] is bigger than the minimal size ξ ,
[q(k)] is bisected into two boxes [q1(k)] and [q2(k)] such
as si ze([q1(k)]) = si ze([q2(k)]) and [q′

1(k)] ∪ [q2(k)] =
[q(k)]. This bisection step is needed to avoid fixed points in
the CSP. A fixed point is reached when the CSP cannot
contract the domains any more. A way to avoid this, is
to bisect the box and then process the CSP over the two
bisected sub-boxes.
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Advanced Robotics 5

Figure 7. (a) represents the experimental environment. (b) represents the considered map obtained by performing a SLAM algorithm.
White cells represent free spaces in the environment, black cells represent obstacles and grey cells represent unexplored spaces. Note
that the grey circle in (b) corresponds to the pose of the robot depicted in (a) and the filled points correspond to the 33 performed global
localizations.

Table 1. Results of the 33 successful global localizations (data of the first iteration).

Average Best Worst Unity

Execution time 33.4 21 45.5 seconds
Precision of x1 ±37.2 ±18.1 ±122.1 mm
Precision of x2 ±32.7 ±16.5 ±51.5 mm
Precision of θ ±2.75 ±0.55 ±12.2 degrees

As it can be noticed in line 11, bisected boxes that are
not consistent with the localization problem are removed
from the final solution (more precisely, they are not added
to the solution set). Note that outliers are handled using
relaxed intersection.[26] Considering no outliers over n
measurements, the contraction is done assuming that at least
n − no measurements have to intersect an obstacle in the
map.

A kidnapping situation is detected when the resulting list
of the algorithm Lk is empty (too many measurements are
not consistent with the current pose estimation Lk−1 and the
map). When this occurs, the algorithm has to be initialized
with all the possible poses (restart a global localization
process over the entire environment).

This algorithm can be divided into two main steps: pre-
diction and correction. During the prediction step (update
[q(k − 1)] to [q(k)] according to [u(k − 1)]) the consum-
ing computation is linear over the number of boxes. The
correction step is the most consuming part. The bisection
steps are known to have a complexity that is exponential

in the number of parameters.[27] On the other hand, the
contraction step computation is linear over the number of
boxes. It can be concluded that the IALalgorithm is globally
linear over the number of boxes.

4. Experimental results

In the following, the IAL algorithm is validated with exper-
imentations. First, the method is tested by using a distant
server to compute the robot localization.

The computer used to process those experimentations has
the following specifications:

• Memory: 2,0 GiB,
• Processors: Intel(R) Core(TM) CPU

6420 @ 2.13 GHz.

Then, the algorithm is implemented into a MiniRex robot
(Figure 1), and all the computation are done on-board, with-
out considering any distant server.
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6 R. Guyonneau et al.

Figure 8. A map of the CAROTTE arena, obtained during the
contest. This map was generated with a SLAM algorithm using
LIDAR (LIght Detection And Ranging) scans.

4.1. The LORIA arena (distant server)

An actual 10 m × 4.7 m indoor environment is considered
(Figure 7(a)). By using SLAM techniques, a map of this
environment is built, Figure 7(b). The objective of the ex-
perimentation is to test the IAL algorithm in a real context:
map with imperfections and non-filtered data provided by
an actual sensor. Note that the map has 2 cm × 2 cm grid
cells.

Static global localizations are performed at 33 different
locations all over the environment, Figure 7(b). Note that for
those experimentations, the robot is localized without mov-
ing. The measurement accuracy is assumed to be ±5 cm,
i.e. to each measurement yi (k) the following interval is
associated [yi (k) − 5cm, yi (k) + 5cm].

The results of those global localizations are summarized
in Table 1.

The execution time evolves between 21 and 45.5 s. This
is due to the first iteration of the algorithm which starts with
all the environment as possible position and all the possible
orientation ([0, 2π ]). The first iteration corresponds to the
worst case of the localization process (the biggest domain).

Note that, to evaluate the precision of the solution, the hull
of the results is processed (it corresponds to the smallest box
that contains all the resulting boxes). Then the precision is
defined by the size of the dimensions of this hull.

4.2. The CAROTTE arena (distant server)

The following data (map and sensor measurements) were
recorded during the CAROTTE challenge in June 2011, by
the CARTOMATIC2 team.

The considered environment, Figure 3, is a 20 m ×
20 m indoor environment. The objective of the following

Figure 9. The result of a global localization. The grey cells
correspond to the obstacles in the map and the black points
correspond to the data-set used to perform the localization. The
black circle corresponds to a solution q(k) ∈ [q(k)] of the global
localization result.

experimentation is to test the IAL algorithm with a larger
and a worse map than the previous experimentation. The
considered map is depicted in Figure 8.

Even in those conditions, the IAL algorithm is robust
enough to provide a localization. Here are the results of a
performed global localization (Figure 9):

• Execution time: 28 s,
• Precision of x1: ±114.2 mm,
• Precision of x2: ±105.8 mm
• Precision of θ : ±2.87◦

4.3. Implementation into a MiniRex

Then we have implemented the localization algorithm into
a MiniRex robot. The objective here is to prove that the
algorithm can be used in a real mission, considering the
moving of the robot (the two previous experimentations
processed static localizations). The map presented in this
section was obtained by performing a SLAM technique
before the localization process. It can be noticed that the
LIDAR sensor measurements are used without any filtering.

A global localization in a symmetrical environment
(Figure 10) is performed. The robot has been placed into
an ambiguous configuration in order to test the behaviour
of the algorithm in this case.

The considered map is presented in Figure 10. The initial
evaluation of the robot’s pose is a 26 m × 4 m × 360◦ box.
This box is represented in the first picture of Figure 11.

Figure 11 presents the initial knowledge of the localiza-
tion problem and seven iterations of the localization process.
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Advanced Robotics 7

Figure 10. The environment and its considered map for the global localization experimentation.

It can be noticed that, because of the symmetries of the
environment, the result of the first iteration (second picture)
corresponds to two distinct sets of boxes. This ambiguity is
solved from the second iteration (third picture), as soon as
the robot moves and gets new sensor measurements.

The final result of the experimentation (last picture of
the Figure 11), is a 42 cm × 15 cm × 7◦ box, for a total
moving of 12 m. The computation time of the first iteration
(the most expensive in therm of computation time) is about
26 s. It can be noticed that those results are closed to the
ones presented previously with a distant server.

5. Comparison between IAL and MCL

In this section, the IAL algorithm is compared with a classic
Monte Carlo Localization (MCL) algorithm.

5.1. Monte Carlo localization

Aprobabilistic approach for the global localization problem
is to compute a probability distribution over all the possible
poses of the robot in the environment (Markov localiza-
tion, [28]). This distribution, called Bel(q(k)), expresses
the robot’s belief for being at the pose q(k). Bel(q(0))

represents the initial state of knowledge. MCL method [29]
represents this belief by maintaining a set of m particles
S(k) = {s1(k), s2(k), . . . , sm(k)}, drawn from it. A particle
si (k) is defined by its pose qi (k) = (x1i (k), x2i (k), θi (k))

and a score qi (k) corresponding to the likelihood of obtain-
ing the data-set y(k) from the pose qi (k). The initial belief
Bel(q(0)) is represented by a set of particles S(0) drawn
according to an uniform distribution all over the considered
environment.

To update the belief, two probabilistic models are
used: a motion model to consider the control data and a

perception model to exploit the sensor data. The robot
motion is modelled by the conditional probability p(q(k)|
q(k − 1), u(k)) and the sensor measurements by the prob-
ability p(y(k)|q(k)).

The MCL algorithm, Algorithm 2, has two important
steps. First a re-sampling phase using the motion model,
lines 2 and 3, that creates a new set of particles S(k) accord-
ing to the previous step S(k−1) and the control vector u(k).
The second step is the update of the new particle scores qi (k)

using the data from the sensor y(k) and the sensor model.

Algorithm 2: Monte Carlo Localization
Data: S(k − 1), y(k), u(k)

1 for i = 1 to m do
2 generate random s from S(k − 1) according to q1(k − 1),

. . . , qm(k − 1);
3 generate random s′ � p(s′|s, u(k));
4 qs′ = p(y(k)|s′);
5 add 〈s′, qs′ 〉 to S(k);

6 normalize the importance factors qs′ in S(k);
Result: S(k).

5.2. Computation time

From the experimental results presented in Section 4, it
appears that the first iterations of the IAL algorithm cost
a large computation time.

On the other hand, when the domain has been signif-
icantly reduced, the IAL algorithm computation time is
comparable to the MCL algorithm.

In the following, the computation time of a localization
with a smaller domain is tested (a 50 cm×50 cm×10◦ initial
box is considered). The experimentation considers a 10m×
10 m simulated environment (Figure 12), 36 measurements
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8 R. Guyonneau et al.

Figure 11. The initial data of the localization problem (first
picture), and the seven iterations processed by the IAL algorithm
(the first picture correspond to k = 0 and the last one to k = 7.
It can be noticed that the robot does not move between the times
k = 0 and k = 1.

for each iteration (5 outliers) and a box [q(0)] with a size
1m×1m×10◦. Here are the average results of 13 successive
localization iterations:

• MCL (5000 particles)

◦ Execution time: 0.07 s.

• IAL

◦ Execution time: 0.306 s.

It appears that in this case IAL and MCL have the same
computation time. It can be noticed that the considered
odometry error corresponds to 10% of the moving of the
robot.

When considering an entire exploration mission, the robot
is more often localizing itself considering its previous pose

Figure 12. A simulated environment: the black pixels represent
the grid map.

than performing a global localization over all the environ-
ment. In fact, the worst case of the localization corresponds
to the beginning of the mission and the recovering after each
kidnapping.

Example Considering an exploration mission of 4000 s
in the LORIA arena presented in Section 4.1. Assuming
that during this mission, four kidnappings were performed,
using the IAL method the mission time would be increased
of 33.4 s + 4 × 33.4 s = 167s, with 33.4 s the average
localization time observed in this environment (Table 1).
This increase corresponds to the cost of the first localization
adding to the four kidnapping recoveries. That would lead
to a 4.2% increase of the computation time over the entire
mission compared to a MCL approach. In those conditions,
the computation time of both methods are similar.

Furthermore, the IAL algorithm can process a static lo-
calization (without moving the robot), whereas the MCL
algorithm uses the moving of the robot to avoid, for ex-
ample, local minima. In the same simulated environment
(Figure 12), we have performed static localizations. It ap-
pears that with 10,000 particles, without moving the robot,
MCL converge to a wrong solution 40% of the time. On
the other hand, by moving the robot, MCL managed to
localize the robot 100% of the time. Thus, the moving
time of the robot should be added to the MCL computation
time, reducing the computation time difference of the two
algorithms. It can be noticed that IALalgorithm also uses the
moving of the robot in order to deal with the symmetries
in the environment. However, even if the robot does not
move, the solution of the localization is contained into the
IAL localization results, which is not the case for the MCL
localization (with not enough particles). Considering the
environment presented in Figure 12, as it does not have
symmetries, by using the parameters presented previously,
the IAL algorithm manages to localize the robot all the time
(without moving).
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(a) (b)

Figure 13. (a) represents the considered map (black pixels), sensor data-set (light grey pixels), with eight outliers, and robot’s pose (black
circle). (b) represents a pose with a better score than the expected one.

Figure 14. (a) represents the IAL results and (b) the MCL results (the grey shapes). The crosses correspond to the expected result. Note
that the best particle of the MCL algorithm is the one depicted in (b). In those conditions MCL fails to estimate the robot’s pose while the
IAL algorithm results still contain the solution.

5.3. Local/Global minima

An obvious weakness of the Monte Carlo algorithm is that
it can be stocked in a local minima and do not converge to
the expected solution. For example, it is the case when there
is too few particles. In practice, with enough particles, the
MCL manages to find the global minimum.

Aquestion can be asked, however. Is the global minimum
the solution of the localization problem? It is when consid-
ering a perfect world (perfect sensors, no outlier), but as
soon as there are outliers in the data-set, this assumption is
not verified any more.

Figure 13(a) represents a simulated pose of a robot in an
environment. As it can be seen eight sensor measurements
are outliers. In this case, the best possible score does not
correspond to the robot’s pose. In other words, the pose
qbest (k) that maximizes the probability p(y(k)|qbest (k)) is
not the solution of the localization problem. For example,
Figure 13(b) represents a pose with a better score than the
robot’s pose.

In those conditions, the MCL algorithm does not con-
verge to the expected pose while the IAL algorithm still
returns a set that contains the solution (see Figure 14(b) and
(a)). It exists MCL ameliorations with random sampling
to recover from those kind of situations [30] but if this
situation occurs during all the localization process, the MCL
algorithm and its ameliorations will not converge to the
actual localization.

6. Conclusion

In this paper, a set membership approach has been presented
to deal with localization problems in mobile robotics. This
method, combining several interval analysis tools appears to
be efficient in a real context. The algorithm makes it possible
to perform a global localization and to handle kidnapping
situations, even with outliers in the measurement set.

Then this method is compared to a MCLalgorithm, which
is mainly used to deal with the global localization problem.
This comparison reveals that interval analysis can be an
efficient alternative to this probabilistic approach. Even if
the first iteration of the IAL algorithm costs more com-
putation time than a classical MCL, when considering an
entire exploration mission the computation times of both
algorithms are similar. Furthermore, the proposed method is
rigorous since it considers all the possible solutions regards
to the localization problem and does not search a global
minima that is assumed to be the solution.
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